
Extended Lorentz invariance and field theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1981 J. Phys. A: Math. Gen. 14 1745

(http://iopscience.iop.org/0305-4470/14/7/029)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:40

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/14/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 14 (1981) 1745-1759. Printed in Great Britain 

Extended Lorentz invariance and field theory 

I M Benn and R W Tucker 
Department of Physics, University of Lancaster, Lancaster, England 

Received 26 January 1981 

Abstract. The role of the extended Lorentz group as an invariance of physical theories is 
re-examined. Contrary to common acceptance it is asserted that all known theories, 
including those that describe the weak interactions, exhibit invariance under the extended 
Lorentz group of frame transformations. The fundamental discrete transformations are 
defined, independent of any particular field system, as endormorphisms on the space of spin 
frames over space-time. The appropriate transformations for spinor fields are considered in 
detail, and the notions of covariance under frame reversal is contrasted with other notions of 
‘parity invariance’. 

1. Introduction 

If we view local Lorentz covariance in terms of the active transformations that relate 
local observer frames of reference, then there seems little to prevent different observers 
employing natural spatial frames that are incoherently oriented with respect to each 
other. The description of phenomena from oppositely oriented frames is usually 
regarded in terms of the concept of parity. In certain situations global Cartesian spatial 
frames have been used to visualise parity operations on classical configurations. These 
ideas are formalised in most discussions on parity in terms of reflecting the global 
Cartesian coordinate system about some inconsequential origin. However, local 
orthonormal frame reversals, which make no reference to any particular system of 
coordinates, may be defined naturally on the bundle of orthonormal linear frames 
(Choquet-Bruhat et a1 1970). Besides generalising the concept of parity to arbitrary 
space-times this has the virtue of removing the concept from dependence on any 
particular labelling of events in space-time. Although we shall not make any explicit 
reference to the gravitational field in this paper it is clearly desirable to extricate the 
notion of the extended Lorentz structure group from any particular geometry of 
space-time. Aside from these aesthetic considerations, we shall find that restricting the 
action of improper transformations to frame reversals puts a number of conventional 
arguments concerning the discrete transformations in field theory into a new perspec- 
tive. 

It is often stated that all relativistic field theories should be covariant under the 
proper orthochronous Lorentz group, but that they need not necessarily be covariant 
under the extended Lorentz group. In particular, it is commonly assumed that the 
theory of weak interactions does not have this extended covariance. In this paper we 
seek to clarify the role of covariance under the extended Lorentz group, in particular 
invariance under parity transformations. We discuss how familiar theories are fully 
covariant under the operation of frame reversal, and suggest that any asymmetries they 
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1746 I M Benn and R W Tucker 

possess should be delineated from their behaviour under such re-orientations of the 
space-time frames of reference. 

There are certain unsatisfactory aspects of many treatments of the spinor trans- 
formation properties under the discrete transformations of the Lorentz group. One 
unsatisfactory feature is the consideration of a specific theory for the definition of these 
transformations. For example, properties of spinors under the Lorentz group are often 
found by looking for transformations which leave the Dirac equation invariant. It is 
subsequently concluded that Weyl’s theory of the free neutrino lacks invariance under 
transformations that leave the Dirac equation invariant. It is thus sometimes said (see, 
for example, Berestetskii et a1 1971) that Weyl’s theory lacks invariance under parity, 
unlike Majorana’s theory. Other authors (Case 1957, McLennan 1957, Serpe 1957) 
have shown the equivalence of the two theories, and thus concluded that Weyl’s theory 
is invariant if we amend the transformations on the Weyl spinors. More recent authors 
have adopted an ambivalent attitude to this situation (Marshak et a1 1969, Sakurai 
1964), maintaining that the important question is whether or not interactions are 
invariant under parity. A common resolution of the situation is to interpret the 
invariance of the Weyl equation as that produced by the operation of CP, where C is 
charge conjugation, and it is even suggested that CP should be relabelled P (Landau 
1957). Various other proposals have also been made (Chang 1966, Werle 1973). Lee 
and Wick (1966) have commented on the unsatisfactory nature of the ‘fuzziness’ in the 
definitions of these discrete transformations, and claim that they are not even well 
defined unless they are such as to leave the theory invariant (Lee 1967). One of the 
prime motivations of this paper is to establish well defined discrete transformations 
independent of any particular theory. Furthermore, we shall argue that the extended 
local Lorentz group is a good symmetry for all known physical theories. 

Properties of the basic spinor representations of the Lorentz group will be presented 
ab initio ; partly to introduce the necessary notation, but also to emphasise that matrix 
methods are not always the most useful in the description of fermion fields. By 
formulating the action of the Lorentz group and its extension on the fields of the theory; 
in terms of linear transformations on spin frames which induce linear transformations 
on linear frames that span the tangent space of space-time; the discussion may be 
readily adapted to the case where the fields are operators on a Hilbert space of quantum 
states. It will not be necessary to draw attention to the induced transformations in 
Hilbert space, and we ignore the operational properties of the quantum fields. In 
particular, for simplicity we do not consider here anticommuting spinor fields. 

The space-time manifold M is endowed with a pseudo-Riemannian metric tensor, 
gM, with signature (-1, 1, 1, 1). This metric allows the construction of gworthonormal 
frames in the tangent space at each point of M. The local Lorentz group, L, can be 
defined as the group of all transformations that take one orthonormal frame to another 
orthonormal frame at the same point of M. Those elements of the group continuously 
connected to the identity form the proper orthochronous Lorentz group, LO. The full 
Lorentz group Lis  made up of Lo, PLO, TLo and PTLo, where P and T are represented in 
the cotangent frame {eo, e l ,  e’, e’} by 

Pe 0 0  = e  Pe k =-e k Te 0 =-e 0 Tek  = e k  k = 1 ,2 ,  3. (1.1) 

The basis vectors of the cotangent frame are labelled in accordance with the metric 
3 

gM=-e0@eo+ e k @ e k .  
k = l  
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Theories may be constructed out of various fields, whose transformations under L are 
prescribed, by constructing an action density 4-form on M. Field equations can then be 
generated by an appropriate variational principle. A theory will be deemed Lorentz 
invariant if this action is a scalar under L. A theory such as free electromagnetism can 
be formulated solely in terms of L-scalar forms generated from the U( l )  connection 
1-form A pulled back to M. As the frames are changed under the L-group action the 
components of A transform contragradiently. Other theories involve fields which take 
a non-trivial representation of L (or its covering). For example, theories of gravity 
involve the curvature and torsion forms which transform non-trivially under L (Benn et 
a1 1980). A field which takes a non-trivial representation of L is referred to here as a 
spin tensor. 

Lo is covered by SL(2, C), and a description of fermions involves fundamental 
representations of SL(2, C). It is important to remember that spinors do not provide a 
strict representation of L. So in discussing the discrete symmetries of P and Ton  spinors 
we are not looking for a representation of L; rather we seek a natural extension to 
SL(2, C) such that the tensor representations of this extended group, ISL(2, C), 
transform like tensors under L. To accord with customary terminology, however, we 
shall refer to spinor representations of the extended Lorentz group when dealing with 
representations of ISL(2, C). 

If we have a Minkowskian space-time we can choose coordinates x ' ( p  = 0, 1 , 2 , 3 )  
such that e' = dx'. We can then define a diffeomorphism, T, from M to M, such that 
points with coordinates ( x ' ,  x i )  are sent to points with coordinates ( x ' ,  - - x i ) .  This will 
induce a transformation on tensors on M. In particular, on the field of Minkowski 
frames T * :  (e', e ' )  + (e', --ei). The usual 'orbital' parity is obtained from the behaviour 
of the tensor components of a particular solution under this diffeomorphism. This 
notion of parity, with its dependence on particular solutions and their behaviour over a 
region of M, must be carefully distinguished from the covariant description of events in 
M by observers who may choose differently oriented frames. 

For completeness we also distinguish our frame parity from notions of handedness 
implied by the nature of any non-orientability of the space-time manifold. Such global 
complications can be incorporated into the discussion with the aid of twisted forms that 
incorporate a 'twist parity' that compensates for the change of sign of the coordinate 
transformation Jacobian necessary when integration is performed over a non-orient- 
able manifold. Our subsequent discussion will be conducted in local neighbourhoods of 
the space-time manifold and any global consideration will not be relevant. 

2. SL(2, C) spinors 

Let {b l ,  b2} be a basis for a complex two-dimensional vector space V which carries the 
basic representation of SL(2, C). Denoting the six generators of SO(3, 1) (regarded as a 
real Lie algebra) by Ti i = 1, . . . , 6  we write 

T'b, = ML,bp a, p = 1 , 2  (2.1) 

where the six matrices M i  ={MI ,  M 2 ,  M 3 ,  iM', iM2, iM3} are given by 

The algebra of these matrices is isomorphic to the quaternion algebra. 
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If 4 E V  
T-1 

4 = deb,  - 4,Tib, = #"Mb,bp 

and we induce the component transformations 

0 T* 
4,  --MLp4 . 

(2.3) 

This complex 2D space can be endowed with a symplectic metric, g, (i.e. a 
non-degenerate, antisymmetric, bilinear function) whose values are preserved under 
the group 

(2.4) g, (4, T I  = R U  (Eo#+ Lo77 1 
since det Lo = 1. 

In this basis we specify its components to be 

where it is convenient to use the lowering convention 6, = gUp['. 

values in C. 
Let V" be the dual space to V: i.e. the space of linear functions of vectors in V, with 

A basis for V" is (6"):  

b" (bp) = 6; (2.7) 

T'b" = -Mkpbfi. (2.8) 

{ b e }  carries the contragradient representation 

(2.9) 

We can use the (preserved) symplectic metric to associate vectors in V* with vectors in 
V. Define i~ V" by 

5"(d = g u  T,5E v. (2.10) 

If I= &be then i(7) = levm V7l E V and from (2.6) &, =eo. 
Given the representation characterised by the matrices {Mi}>  we always have 

another characterised by the complex conjugate. L,et {c,}  be a basis for a vector space X 
where 

(2.11) 

(2.12) 

We can introduce a preserved symplectic metric on X ,  g,, and associate vectors in X 
with vectors in X* exactly as elements in V and V" are related. It is customary to write 
4 E X as qj = 4'c,. Of course this notation is redundant here as the basis indicates how 
the components transform. 
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For the real algebra {TI} the conjugate representation is not an equivalent represen- 
tation. However, for the subalgebra that generates SU(2), complex conjugate 
representations are equivalent and there exists a basis for V that transforms like {c,} 
under the SU(2) subalgebra. Since QTg& =; g, V Q  E SL(2, C) then fp = g,$, trans- 
forms like cp under SU(2). Similarly gp = giic" transforms like bp under SU(2). 

The situation is summarised in the following diagram. 

V X 

basis {be}: T'b, = ML,bP 
basis Ifp}: fP = gijb,  

~ i f p  = M:*$, for T' E ~ s u ( 2 )  

dual vector 
spaces 

r "* I , 

- a basis {c"} :  Tic, = M& 
(complex) basis {go} = g&, 
conjugate 

representations T'gP =,Mh,g, for T' E YSU(2) 
tl = vace = tl& 

basis {b"} :  ba (bp)=6z  basis { c"} :T 'ca  = -M$c' 
(complex) 
conjugate 

representations 

go = g i j c "  

f P  = giib" 

3. Parity 

The vector space V is a representation space for SL(2, C), i.e. the group is realised by 
linear transformations from V to V. Can we introduce a linear transformation, P, from 
V to V such that PQ = QP iff Q E SU(2)? Equivalently, is there a matrix with these 
properties? The answer is no. However we can define a linear transformation P on the 
space V 0 X with these properties. Let 

Pb, =g, Pc, =fa. (3.1) 

Pf, = -c, Pg, = - 6, (3.2) 

We obviously have the right commutation properties. This definition gives 

and so P2 = -1 on spinors. 
We similarly define 

Pb* = g" Pc" =p (3.3) 

such that (Pb")(Pbp) = b"(b,)  =a;, etc. 
As well as an arbitrary phase, the choice P2 = -1 is conventional, and we could have 

chosen P2 = +1. This point will be commented on later. 
The vector space S = V (%, X is a representation space for the Lorentz group 

extended to include the mapping P. Lbt Q, E S : Q, = dab,  + q&g, = &fe + T,C, then 
PQ, = daga - q,b, - &c, + q"f,, and so we may induce the component transformation: 



1750 I M Benn and R W Tucker 

Note however that if we write CP = #J O 7, #J E V, 7 E X  then P does not yield 4 + 7. 

metrics can be used to define a metric on S that is invariant under SL(2, C) and P. 
Both V and X have been given a metric which is preserved under SL(2, C). These 

Define G : S x S + C  by 

G ( k ,  b p )  = gU(bm, 43) G(G, CO)  = c p )  G(b", c p )  = 0 

G(G, b p )  = 0 Vu, P. (3.5) 

It is readily verified that G(P@, PA) = G(@, A)VCP, A E S.  

4. Spin tensors 

We define tensors on S and induce their transformation properties from the trans- 
formation of the basis of S.  

Let 

{B,) = {be) U { c p >  

{ B , )  = {b")  U { c5 }  p = 1 , 2 , 3 , 4  a, p = 1,2 .  (4.1) 

An arbitrary element of Si ( S )  is TrB, OB". S: ( S )  is a 16D representation space of 
the extended group. This can be decomposed by the usual Clebsch-Gordan procedure 
into a sum of irreducible representations, i.e. 

S ; ( S )  = YO &4 0 YO 9 0 (4.2) 

where V and &4 are 4D subspaces of Si ( S ) ,  Y and 9 are 1D subspaces of .Ti ( S )  and X is 
a 6D subspace of Si ( S ) .  

It can be checked that a basis for V is {q,}, where 

and that Pqo = qo, Pq, = -4,. 
Furthermore we may use this basis to constuct a spin tensor valued coframe 1-form 

e = e@q, since P induces on the real one-forms the appropriate frame reversals under P. 
A basis for d is {T,), where 

It can be checked that Pqo -- -TO, Pqi  = vi. The {qN} are the appropriate spin tensor 
basis for the 3-form basis 

(4.5) e ( 3 ) = e  1 2 3  Ae Ae q o + e o r \ e 2 ~ e 3 q ~ + e 0 ~ e 3 ~ e ' q 2 + e o ~ e ' ~ e 2 q 3 .  
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A basis for Y is 

s = 61 Ob' + 6 2 0  b2 + c1 0 c  ' + c 2 @ c 2  

and Ps = s, Qs = s, VQ E SL(2, C). 
A basis for B is 

p = b 1 0 b ' + b 2 0 b 2 - C 1 0 C 1 - C 2 0 C 2  

and Pp = -p, Qp = p  VQ E SL(2, C ) .  
A basis for is {ai}, i = 1 , .  . . , 6 ,  where 

-. 

U1 = c 2 0 c 1  + 61 Ob2 + b20b' + C' Oc2 

u 2  = i{bzOb' + c1 02 - c 2 0  c 1  - bl o b2} 

U 3  = b' 0 b - b2O b + c1O c - cz  0 c 

U 4  = i(b2 0 b + c1O c ' - bl 0 b - c2 0 c'} 

U S  = ~ 2 @ ~ ~ - 6 1 @ b ~ + b 2 0 b '  -c1@c2 

U 6  = i{c2@c1 -61 @b2-b2@ b' + C1@ C 2 } .  

If we put 
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(4.6) 

(4.7) 

e(2) = eo  A e 'a1 + e O A e 2 u i  + eo A e 3 u 3  + e A e 'a4 + e3 A e us + e 2  A e 3u6 (4.9) 

where e(2) is the spin tensor valued 2-form basis, then we induce the appropriate 
transformations on the components. 

Since we have a metric on S we can induce a metric on 9: ( S ) .  (The same symbol will 
be used for the induced metric.) 

We define 

G(BA OBp, B, O B " )  = G(BA, B, )G(BP,  B") .  (4.10) 

It can be checked that, for example, 

G(qo, 40) = 4 G(qi, qi) = -4 and all others zero. 

5. Time reversal 

So far we have extended SL(2, C) to include P, in such a way that we can identify the 
tensor product representations with representations of LO extended to include P. We 
now look for a transformation T:S + S,  that allows us to continue this identification. 
That is, we seek 

TqF = -P& TrltI = -h, Ts = Ps Tp = Pp Tuj = P a ,  

(5.1) 
This requires that 
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In terms of the basic space S we need either 

Tb, = -Pb, Tb, = Pb, 
or 

Tc, = Pc, Tc, 3 -Pc,. 
We choase the former, i.e. 

(5.3) 

(5.4) 

It can be checked that T2 = +1, TP = -PT on spinors, and PTb, = b,, PTc, = -c,. 
Further, G(T@, TA) = G(0, A)V@,  A E S ,  so G is preserved by the full Lorentz group. 

We can now return to the question of the implications in choosing P2 = +1, or -1, on 
spinors. We could have adopted for our definition of P what is here called T, thus giving 
P2 = +l. Had we done so we could have re-identified ISL(2, C) irreducible represen- 
tations in St ( S )  with L reresentations, and would then have looked for a T : Tb, -- 
-Pb,, Tc, = Pc,. We would thus have chosen for T what has here been called P. So we 
can choose P2 = * 1, but need T2 = F 1. 

6. Charge conjugation 

We define C to be a conjugate linear transformation that maps the basis of a 
representation space to the basis of the (complex) conjugate representation space (for 
any group %). 

If 

then 
C 

4 = d a g ,  + &**B:. (6.3) 

It can be seen from this definition that C 2  = +I,  [C, U ]  = 0 V Q  E % (for any 3). 
In particular, if % is SL(2, C), let 

@ = Cab, + 77 ' c ,  E S  

then 

C 0  = Q C  = t a * c ,  + q'*b, 

and so we induce the component transformation 

5" +$* 77' + 5,". 
We can now check the commutation relations between T, C, and P 

C 
Q)=(5ab,+7a~c,)-((5"*~,+77'*b,)  

1p 1' 
([%a +$fa) 5 k?*f. +77m*,,.* 
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Hence CP = PC on spinors. Similarly we can show CT = -TC. Note, however, that 
since C is conjugate linear, arbitrary phase factors can change these commutation 
relations. 

It is readily verified that 

G(C@, C A )  = G”(@, A) VQ, A E  S.  (6.7) 

C is induced on F^,p(S) in a natural manner 

C ( B , O B ” ) =  CB,OCB” (6.8) 

ensuring that [C, Q] = 0 V Q  E SL(2, C). 
It may also be verified that 

Cq, = 9, 

a, = - v w  c p  = - p  cui = ui 

cs = s 

(6.9) 

although no significance should be attached to the signs as they can be changed by 
modifying phase factors, e.g. q; = iq, : Cqk = Ciq, = -iCq, = -4’ CL. 

7. Construction of a preserved Hermitian metric on S 

We define a new metric GH on S in terms of G and C :  

GH(W, A) = iG(CW, A) ~ , A E S  (7.1) 

GH is obviously conjugate linear in the first variable and linear in the second. Also 

Gn(A, 9) = iG(CA, 9) 

= iG*(C*A, C9) by (6.7) 

= iG*(A, C9) 
= -iG*(C9, A) 

= G& (W, A) (7.2) 

so GH is Hermitian symmetric. 

define E S” by 
We can use this Hermitian metric to associate vectors in S with vectors in S * .  We 

+(A) = (&I(*, A) VA E S. 

Then 

+(A) = iG(qC,  A) = -iG(A, Vc) = -i$,(A) 

(7.3) 

(7.4) 

so ? = -i$,. 

extending this formalism to the case where we have a symmetry group SL(2, C) x 
some unitary ‘internal’ group 

will be referred to as the Dirac adjoint, or Hermitian adjoint of 9. 
This Hermitian metric will be used in forming real actions in later sections, and in 

for 
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8. Relation to matrix representations 

Having made our definitions in generality we can now introduce matrix methods if we 
wish. We can adopt as a basis for S 

Then the basis for S" can be written as row vectors, and their action on S is matrix 
multiplication. Elements of Y:(S) are written as square matrices; their action on 
elements of S being multiplication from the left, and on elements of S * ,  multiplication 
from the right. 

To illuminate the role played by matrix multiplication we define the contracted 
tensor product map 

(8.2) 

by ( A  0 B)(A,  9 )  = [A(A)](B($) ) ,  A, B E S: ( S )  VA E S",  $ E S.  It is easy to see that in 
matrix language 

0 : s: (S)xs: ( S )  + s: ( S )  

A - ( A  0 B )  * $ = ( A  . A )  ( B  * $ ) = A  - ( A  - B )  9 $ 

where refers to matrix multiplication. Thus matrix multiplication of the matrix 
representations of St ( S )  corresponds to the contracted tensor product, 0 .  

In the rest of this paper we shall simply write A B  instead of A 0 B, for A, B E S: ( S ) .  
We shall also simplify our notation by writing A$ instead of A($),  A E Si ( S ) ,  $ E S 
and A A  insted of A ( A ) ,  A E ( S ) ,  A E  S".  This notation is such that we may readily 
use matrix representations should we so wish. 

To conform with convention we shall write the matrix representations of the {4&} as 
{ y&} .  In the chosen basis 

where the { M i }  were introduced in (2.2). 
We may similarly find the matrix representations of the other elements of Si ( S ) .  

s = 1 (the 4 x 4 identity matrix) (8.4) 

p = Ys  = iYOYlY2Y3 (8.5) 

17&= YSYF (8.6) 

U 4  = Y2Y1 u s  = Y1Y3 U 6  = Y3Y2. (8.7) 

U1 = YlYO U2 = Y2YO U3 = Y3YO 

Also 
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and 
t 

YO =-yo Y r’ = YI. (8.9) 

It should be noted that .t means ‘conjugate transpose’, and not Hermitian con- 

It can be verified that 
jugation. 

{Y”, YY) = 2llLLu (8.10) 

where T~~ are the orthonormal components of gM ; either by matrix multiplication using 
(8.3); or by confirming that qF 0 qy + q y  0 q” = 2qF,,, using (4.3). 

It is readily checked that 

p* = YO* (8.11) 

and that 

T* = i Y l Y 2 Y 3 G  (8.12) 

corresponding to the definition introduced by Racah (1937)t. Also 

c* = YIYOY3*’* (8.13) 

and 

J = i++ yo. (8.14) 

9. The Weyl equation 

The appearance of familiar expressions in the previous section might give the impres- 
sion that we have so far merely presented well known facts, in a somewhat long-winded 
manner. However, the following simple example illustrates how working with the 
intrinsic spin tensors removes the ambiguity referred to in the introduction. 

The Weyl equation can be written in this language as 

* e A d * = O  (9.1) 
where $ E V c S ;  e = e’”q,, the spin tensor valued 1-form basis; d is the exterior 
derivative, and * is the Hodge map h P ( M )  + A4-’(M). Here we have, for simplicity, 
taken a gauge in which the space-time connection, describing the gravitational field, is 
zero (see Benn et a1 (1980) for more generality). 

Choosing global Minkowskian coordinates, xLL,  (9.1) can be written as 

*e”qfi A a,$,“e”b, = *e” A e”a,4“qF(ba) = 0 

-~LLY*la ,$“q , (b , )  = -a”*“qLL(b,)*l = 0. 

So (9.1) gives 

aLL$laqLL(b,) = 0.  (9.2) 
In this form the covariance under parity is apparent; qy(b,) EX, whereas (Pq,)P(b,) E 

V; but the components of the equation are unaltered. (In particular we do not take the 
complex conjugate! cf Berestetskii et a1 (1971)). 

f cf and contrast our approach and conclusions with Jauch and Rohrlick (1955). 
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Although $ has only two non-vanishing components (9.1) should not be written as a 
2 x 2 matrix equation. 7'" E Si ( S )  is irreducible under L: it is however reducible under 
Lo. These reduced parts of 7" can be represented by 2 x 2 matrices (the Pauli matrices), 
but we cannot then induce the appropriate transformations on ecL. Thus the require- 
ment that we induce the full Lorentz transformation properties of the e @  from the 
transformation of their spin tensor basis fixes that basis for us, and ensures the 
covariance of (9.1) under L, independent of the number of non-vanishing components 
of *. 

10. Unitary internal groups 

In general the fields in a physical theory will be representations of k x gU, where 9, is 
some 'internal' group, assumed here unitary. We show how the preceding formalism is 
easily extended to accommodate this situation. 

Let U be a representation space for 9,. Since 9, is unitary it allows a preserved 
Hermitian metric, G,, to be defined on U ;  and we can choose a basis {U,} for U such 
that G,(u,, up) = Sap. Let {ua}, such that u " ( u p )  = a;, be a basis for U*. We can use G, 
to associate vectors in U with vectors in U*. We define xi E U" by 

x+(A)  = G,(x, A )  x, A E U. (10.1) 

If x = ~ " u , ,  then this gives ,y'= ,yU*ua. 
We define a Hermitian metric, GT, on S 0 U, which is preserved by L x 9,, by 

GT(Q~ 0 up, B, 0 U,) = GH(BA, BcLPu(up,  uo). (10.2) 

The notion of the Hermitian adjoint is extended by defining (LE S* 0 U* by 

= GT(& A) +, A E SO U. (10.3) 

11. A simple model 

We now take an illustrative example of a simple model that is invariant under L, but is 
conventionally interpreted as not being invariant under parity. 

Let U be a representation space for U(1); spanned by u such that Qu = Aiu; Q being 
the U( l )  generator, and A some integer. Let W be some (in general distinct) represen- 
tation space of the U( l )  group, spanned by w such that Q w  = Fiw, for some integer p. 
Consider the action density 4-form on M :  

A = 2 Re (4 * e A D6+ fj * e A Dq) [ E V O U  q E X @  w. (11.1) 

(11.2) 

D is the U( 1) gauge covariant derivative defined by 

D t  = d6 + iAA6 Dq = dq  + ipAq 

where A is the (real) U( l )  connection 1-form. A is invariant under the extended Lorentz 
group, as may be seen by writing * e A D l  as GT(&, *e A 0 6 )  and recalling that GH (and 
thus GT) is invariant under all of L. Note that if 6 0, ,U = 0, (11.1) reduces to the free 
Weyl theory, and the preceding remarks emphasise its invariance under L. 

In the general case writing out the covariant derivatives explicitly gives 

A = 2 Re (g * e A hiAS+ 77 * e A &AV)+ kinetic terms (11.3) 
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from which we identify the interaction as A A J with 

J = 2 Im ( A i  * e[ + pf * e q ) .  (11.4) 

Consider first the particular case of p = 0. Since [ E  V, p [ = . $  ( p  spans 

J = A  Im(F*e[+l*ep[) (11.5) 

This is traditionally called a ‘ V + A ’  current, and its alleged transformation properties 
under L are the reasons usually given for the absence of an electrically charged neutrino 
(Gursey 1950, Serpe 1949). This argument depends on associating the behaviour of the 
conventional electric current under parity with that of the right hand side of Maxwell’s 
source equations. These may be written as L-scalar 1-form equations 

* d * F =  * J  (11.6) 

If the U(1) invariance that generated the current in (11.5) were that of electromag- 

B E F: ( S ) ) ,  and J may be written 

where F = dA. 

netism then (1 1.6) becomes 

(11.7) 

where we have used the matrix representation of the spin tensors. This may be written 
as a spin tensor valued 0-form equation 

(*d*F),y” = (*J),y’* (11.8) 

where y’* = q’*’’yv such that ywyv  = 8;. 
The important fact is that this equation ha5 been derived from an extended Lorentz 

invariant theory, so the absence of an electrically charged neutrino must be explained 
by reasons that are distinct from lack of invariance under L. 

Consider the special case of (11.1) for which A = p. We can then define 9 E S 0 U 

*=to77 (11.9) 

(if A = p, U and W are isomorphic and we may identify them). (11.1) can then be 
written as 

by 

A=2Re($*el)rjl) 

= -2  Re ($y,D$) *e’* (1 1.10) 

and it may be recognised as the kinetic part of the U ( l )  invariant Dirac action. (1 1.10) is 
invariant under the interchange of .$ and q ; a transformation between a spinor in X and 
one in V with the same U( l )  charge (as is the parity transformation). Note, however, 
that whereas (1 1.1) is invariant under L for all values of A and p, we have the above field 
transformations as a symmetry iff A = p. Further, we see that this case generates what is 
conventionally called a ‘pure V’ current; that is 

* J = 2A Im ($y,$)e’*. (11.11) 

Thus for the model considered here the absence or presence of these field symmetries 
corresponds to what is conventionally called parity non-invariance and parity invari- 
ance. 
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12. Conclusion 

We have demonstrated that a consistent definition of space-time frame reversal can be 
established by inducing on the orthonormal frame bundle, transformation defined 
fundamentally on a bundle of spin frames over M These have been established to carry 
linear or conjugate linear representations of operations that have been identified as P, T 
and C. Identifying the components of vectors in these frames with the components of 
Lorentz group spinors we find that such operations are represented by conventional 
spinor component transformations under the extended Lorentz group to within an 
arbitrary set of phases. With the aid of ISL(2, C) invariant metrics we have shown how 
to construct action 4-forms on M that are inyariant under this extended Lorentz group. 
The procedure has been naturally generalised to include C invariance with respect to 
additional unitary internal symmetry groups. 

Our main conclusion is that the concept of so-called non-invariance of physical 
theories under the discrete transformation P should not be confused with the formula- 
tion of physical laws in oppositely oriented space-time reference frames. The notion of 
such symmetry violations must be sought in the behaviour of the dynamical field 
equations of motion under appropriate field transformations. We have already noted 
that conventional parity violating terms in ,an action are not invariant under the chiral 
interchange 6- 77. We stress that this interchange of complete spin tensors is not the 
same as our transformation (3.2) under P. In the current theory of the electroweak 
processes (Salam 1968, Weinberg 1967) such an asymmetry is built into the theory of 
course by assigning different dynamical charges to the chiral lepton spinors. Similarly 
the pion is identified as a pseudoscalar field fundamentally because of the way it is found 
to couple to the nucleon current. Since the space-time frames themselves are legitimate 
dynamical fields we should allow transformations that involve the e a  among such 
dynamical field symmetries. Such transformations are at the heart of the dual operator 
F t, aF that distinguishes between interactions such as F A  F and F A  *F involving 
gauge field curvatures F. In their component formulation such terms are often 
distinguished on the grounds of their behaviour under parity. With the formulation of 
theories in terms of extended L-group tensors we hope to have clarified the distinction 
between covariance under frame reversal and the asymmetries that have their origin in 
certain field transformations of interacting field systems. 
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